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O. INTRODUCTION

In (commutative) algebraic geometry,vhomogenization and dehomogenization
techniques are used to reduce questions about nrojective varieties to
questions about associated affine varieties (at least if these Questions

can be answered by looking at the local rings, cfr. e.pg. [1]. |
After the introduction of noncommutative affine and projective schemes |
(cfr [6, 4, 91), the question arose whether a similar technique coﬁld be
developped in this noncommutative setting, The aim of this note is to
prove that this is indeed possible. In the first three sections we treat
the most generalmcasé, i.e. homogenization and dehomogenization of (pre)-
sheaves of rings. It is proved that the homogenization functor commutes
with sheafification whereas the same is true for dehomogenization when the
topological space is (quasi) compact. An example is given to show that

this compactness hypothesis cannot be dropped,

Because therdefinitioh of noncommutative schemes benefits from the proper
use of kernel functors we also investigate the (de)homogenization of kernel
functors when R is a prime left. Noetherian rings we obtain relations between
the rings of quotients yielding the desired noncommutative analogues of some
classical commutative results, cfr. Section 7. I am indebted to

Prof. F. Van Oystaeyen for several discussions which helned shane the

contents of this note.




1. PRELIMINERIES

(1.1.): A ring R is said to be graded (of type Z) if there is a family
of additive subgroup {R : n ¢ Z} of R such that R = @ R, and

yi, J ¢ Z : RiRj c Ri+j'
An M ¢ R-mod is said to be a graded left R-module if there is a family
M, 1 nel} of additive subgroup of M with the properties : M = @ M,
and RM; < My, 5 for all i, j ¢ Z. The elements of h(R) = U R, and

h(M) = U Mn are called the homogeneous elements of R and M resp.

Ifm# o0, meM thenmis called an homogeneous element of degree i and
we write degm = 1, Any nonzero m € M may be written, in a unique way,
as a finite summ, + ... +my with deg m; < deg My < vvv < deg my;

the elements Mys oees Ty (all non-zero) are called the homogeneous compo-
nents of m.

R-gr is the Grothendieck-category with objects the graded left R-modules

and morphisms the gradation preserving R-module homomorphisms,

(1.2.): Let X be a fixed topological space, All sheaves and presheaves
in this note will be defined over Open(X), the category obtained from X
in the usual way. Let R be a Gr-Ring, i.e. a sheaf of graded rings over
open (X) such that for any U, V ¢ Open(X) with V c U, the restriction
morphisms p[‘} : R(U) » R(V) preserve the gradation,

We will consider the following Grothendieck-categories:

+(R) (resp. o(R)) will be the category of presheaves (resp., sheaves) of
modules over the sheaf Rr.

gn(R) (resp. go(R)) will be the category of presheaves (resp, sheaves) of
graded modules over the sheaf R, i.e., M ¢ gn(R) if and only if M ¢ v(R)
where () : gr(R) » n(R) is the functor defined by forgetting the gradation)
and for all U ¢ Open (X) : M(U) ¢ R-gr; vU, V € Open (X), V c U:

M-\[; : M(U) - M(V) is gradation preserving,




2. HOMOGENIZATION AND DEHOMOGENIZATION

(2.1.): From [4] we recollect the following definitions. Let R be a graded
ring, The ring of polynomials R[ T] may be made into a graded ring by putting:
deg T= 1; NTL = { 2 rTJ r. € R.} -
n itj=n it 2 71 i
In the same way, we build the graded module of polynomials M[T] starting
from an M ¢ R-gr. If we decompose x ¢ M into homogeneous elements;
X =X ot H Xy H * + X, (xi € Mi), then we may associate to it an
homogeneous element x in M[T] which is given by:
*
Xy = X TR L X4 ™+ ...+ Xy We say that x is the
homogenized of x.
Conversely, if u is an homogeneous element of M[T], say,
- +N+ n+ i ‘
u=u_ TP L L. u, Py ..+ Uy TP with u; € M,, then
Uy TU e UG L YUy is said to be the dehomogenized of u,
If M ¢ R—gr‘ and N is a (not necessarely graded) R-submodule of M, then by

N* we mean the R[T ]-submodule of M[T] generated by the n*, n ¢ N. Of course

N* is a graded submodule of M[T], it is called the homogenized of N. Any

* r *
ne¢eN 1is of the form T n1

Conversely, to a graded RITI-submodule L of M[T] we may associate

» Ty ¢ Nand v = 0.
Ly = {u,; u ¢ h(L)}. It isclear that L, is an R~submodule of M,

(2.2.): Now, let R be a Gr-Ring, We will form the Ring of polynomials
RIT] as follows: if U € Open (X), we put RITI(U) = R(U) [T] with gradation
as in (2.1.), if U, V € Open (X) with V ¢ U, the restriction morphism

* U . .
(o )3 is given by:




(o )V (Tm+n+p ..+ Tm'p:xO ..k Tpxn) =

TP pg(.x_m) toaeo ¥ TP ps.(xo) o+ TP pg(xnj).

Because p?, preserves the gradation, the same is true for (p*)g, hence
R[T] is a Gr-Ring (the verification that R[I] is a sheaf is proved along
the lines of Prop. 2.3. below).

If M ¢ gn(R), we can define the Module of polynomials M[T] in a similar
way .

Now, let N ¢ w(R) be a subpresheaf of M € g (R). For all U ¢ Open (X),
define N (0 =N (U ¢ M[T]. The restriction morphisms (N*f)g for

V ¢ U ¢ Open(X) are given by:

* .U NP . D - TP =
Ny (T x__m+...+Tn xo+...+Txn)

+n+p U +P ‘ ’ p U,
T 0 oy e e TP ) e TP ).
It follows that N is a graded subpresheaf of MI[T].

(2.3): Proposition: In the situation of (2.2), if N ¢ o(R), themn

N € goRITI).-
Proof.

(81): Let U ¢ Open(X) and {U_i; i ¢ I} an open covering of U. Suppose

n ¢ N(U) and (N*)g.(n*’) = o for all i ¢ I, then:

= (N*)g_ (n*') (M’*){}I (n ) = (Mg__(n)* = (Ng_(n'))* and from (_x*)* = X,
i i

1

it follows that NU. (n) = o for all i € I. Because N is a sheaf we
i

. *
obtain n = o, thus n = o.




(,): Let n} € h("(U,)) with compatibility conditions:

U. U.
* 1 X, ] .
W) (n) = M) (n%)
UiﬂUj i UjﬂUi J
Every n{ is of the form n!1 = Tkl (n’;') with n, ¢ N(Ui) .

For all i,j we have:

i U, U, s U. .
Kowd ot = WA @y =gt @ -
T (NUiﬂUj, (nl)) - (N )UanJ (T nl) (MJUIHUJ (T nJ) =

.U,
L 1
=T (M (n.)) .
Uint ] ;

. U.
- . R { oy J ‘
Dehomogenizing both sides yields: NUiﬂUj (ni) MUiﬂUj (nj) for all
i,j € I. Using the second sheaf condition for N we find an n ¢ N(U)

such that Ng (n) = n. for all i.
j .

From the equalities above, it follows that ki = kj =k for all i, j.

k n* finishes the proof.

n' =T
(2.4): Let N be a graded subpresheaf of M[I] with M € gm (R). For every

U ¢ Open(X) we put: N, (0 = (N(U)),. For Vc U ¢ Open(X) the restriction

morphism (N*)g is given in the following way: if x ¢ M, (U), then there

exists an y ¢ h(M(U)) such that y, = Xx, put: (N*)g. (x) = (Mg(y))*.

One easily checks that this definition is indepent of the choice of y.

(2.5.): Proposition: In the situation of (2.4): if X is a compact topolo-

gical space and N ¢ go(R[T]), then N, € o(R).

Proof.

(S.]): Let U ¢ Open(X) and let {Ui; i ¢ I} be an open covering of U.

Suppose x € N, (U) such that CN*)H‘('X) = o for all 1 ¢ I. There exists
5 _

an y ¢ h(N(U)) such that y, = x.




Now, (N (y))* = (N*)U (x) = o, thus, NU (y) = o for all i € I and the fact
that N is a sheaf, ylelds y = o, hence x = o. Compactness is not necessary
for this part of the proof.

(SZ): The compacthess hypothesis allows us to restrict to a finite covering
{U,; i=1, «.., n}. Take X3 in N, (Ui-) such that |

1

U, -
(N*)Uanj (x;) = (N*V)UJiHUj (x,) foralli, j=1,....n

There exist Y eyh(Ui)‘) such that (yi‘)* = X;. Put deg(_yi) = di and
. med, T
1, <., n . Replace y, by y} =T 1 Y;o then (‘yi)*r = X

H

m = max di‘; i
and:

U, U, U, U,
1 - 1 _ J ‘ _ j o
Uy, O Dx = Wy, G = Wy, 050 = Uiy O30

U. : U.
Because deg(NUl_ﬂU. (yi)) = deg('NUJnU (yJ!)') it follows that
i Ji
U U .
NU ﬂU (y ) = U ﬂUJ (yJ!) and therefore there exists an y ¢ h(N(U)) such

U
that NU.

; y) =Y; for all i. y, is the required element in N (U).

(2.6): The compactness condition cannot be 'dropped:

Example

Take N with the discrete topolop"y and R the constant sheaf of rings Z over
it. Now, take N to be the graded‘subsheaf of Z[T] as follows: if U is a
finite open set of N, then N(U) = ™7 [T] with n the maximal element in U.

If U is infinite, N(U) = o. If U =@, N(U) = Z[T] . Restriction morphisms
are inclusions or the zero map. It is easily checked that N is a sheaf.

N, is the presheaf with N, (U) = Z if U is finite, N, (U) =0 if U is infinite
and inclusion or zero map for the restriction morphisms.

(s,) fails, for, take U= N, U, = {i, i + 1} and X, = 1 ¢ N(U‘i)' There

exist no element x in N, (N) such that N[]I]\] x) =




3. COMPATIBILITY WITH THE SHEAFIFICATION FUNCTOR

(3.1): We recall the construction of the réflector a for the inclusion
o(R) - n(R),"u’sﬁally called the sheafification functor, cfr. e.g. [8].
Fi‘fst, define a functor L : #(R) - n(R) as fol_.loWs. Let U ¢ Open(X) ,
we give vCov;X (U), i.e. the set of all open coverings of U, the structure
of a category: if U= {U.l; iel}, Vs {VJ.; j € J} are in Cov,, (0, a

- morphism U ~ V is given by amap ¢ : T » J such that U, < Ve (:i.) for all
i€ I Let M € n( ) and define M, U, U ¢ Open(x), by its action on a
cévéring U= {Ui,; i 6 I} of U:

) , .
[M, UI(U) = Ker (n M(U)) e " M(U,NU))
| . ier V%G, x1

' o U.
where the (j,k)-component of p is MU;! U (mj) and the (j,k)-component of q
: J

k
U
is M (m); withm, : w M(U.) - M(U.) be the restriction morphism.
UJ.HUk k 175 j i

Note that [M, Ul : CovX (U) -~ R(U)-mod is a contravariant functor. Hence
we can define an object LM of n(R) by:
L M: Open(X)%PP 5 set Uvr lim M, U] (U)

R UeCov, ()
Note that L M) = 1im 1im V)

UeCov, (U) Veu

The assignment M = LM defines a left exact endofunctor of w(R) satisfying:
 1. If M € @(R), i.e. the class of separated objects in w(R) (satisfying |
(S1)) ',_ thén the canonical morphism M~ LM is a monomorphism and LM € o(R).
2. If M € m(R), then LM € o(R)
3, I:E‘M € o(R), then LM = M and conversely.
Firia.l.ly, define i{..g = L’o L where i : o(R) - o(R) is the canonical inclusion,

‘then g is a left adjoint of i and is called the sheafification functor.




Let us denote a' for sheafification in w(R[T]), then we have:
(3.2): lemma: If M ¢ gn(R[T]), then a'M) € go(R[T]).

Proof.

For a‘ll U ¢ Open(X) : R(U) - gr is closed under direct and inverse limits,

hence we are done by the remarks preceding the lemma.

(3.3): _:f__heorem: Let N ¢ nw(R) be a subpresheaf of an M ¢ gr(R), then:

g' (N*) = g(N)*, i.e. the following diagram "commutes'' for suitable N.

~ OF |
m(R) — > o (RIT])
| s
s | | " ,l 2
a(R) « - >go(R[T])

Prodf.

First étep: for every x ¢ X : Sx (_N*) £ (SX (N‘)')* where ,Sx(") is the
stalk at x. ‘

Let a ¢ h(S (N*) ), then we can :find a neighborhood U of x and an element
y € hl" (-U;);‘-) representing a. Lety =y_ R S Yy ™ with

Yi Ev M(U)-i. We consider the morphism:

. - R . *
£:8,N) > (S, (N) | v
| . inp U » U
o oy Pl oy TP el o T

f does not depend on the choice of U and y, for, if V is another neighbor-
‘ o ety ! ot '

hood of x and y' =y_ s Yo 4P v L, Y P’ ¢ h(N* (V)

representing a. Then, there is a neighborhood N ¢ UN'V of x such that

(N*:)U (y) = (N*)% (y'). Hence:




U
My &

AN+p U +p U P _
_m)I‘“ o M (yo)Tn bt M ) T

WY (Y ) = WYy ) =

Vv y Tr+a+p’ + iV ety TAD! Vo ooy 7P
M O ) T M DT b M YT

Moreover, f is injective, for if f(a) = o, then Mg (yi) o for all i, hence

we can find a .neighborhood Wc U of x such that M% (yi) o for all i.
Because the definition of f does not depend on U and y, x = o follows.
Also, f is surjective. Indeed, if y ¢ h(SX(N')*), then y is of the form

y = (")) withy' € S_ (W), letting y' =y_ + ... +y,, then for all i
we can find a neighborhood U; of x and an X3 € h(M(Ui‘)) representing y. .
Take U =N U, and consider:

| U_ U U
Py ) e U ) * e ¥ My (y,), then:

b =TP (b')* € hCN* (U)) represents y.
Second step: in view of Prop. 2.3., both (g(N))* and g' (N*) are in
go(R[T]). In order to establish the isomorphism it will be sufficient to
establish isomorphisms between the stalks (cfr. e.g. [2]). Now, for all
x € Xt
s, @ W) =5, (W) = SN = 5 @ WN* =5, W™

(3.4): Theorem: Let X be a compact topological spare and N ¢ gn (R[T] ')b a

graded subpresheaf of M[T] with M ¢ w(R), then: (a' (N)), =a (N,), i.e.

o

the following diagram 'commutes" for suitable as above:

| (-), | |
gn (R[T]) : "‘ w (R)

l ) l

go(RIT1) ' — o(R)

1)
i




10.

First step:‘for every x € X : S,x (N) = (SX(N))*. Let a ¢ SX(N*), then there
is a neighborhood U of x and an element y € N, (U) representing a. Pick
z ¢ h(N(U)) such that z =y, and define

£:8, () >(5, (),

a o (),

This definition is independent of the choices made. For, let V be another

neightborhood of x and y' (with corresponding ') in N (V) (resp. in

h(N(V))) representing a, then we can find an open x€W ¢ U N V such that:
WOy &) = Wy o1

Hence, (N% (z))* = (Nx (z')), and thus there exists a natural number k such

vV

that, MY (2) = Ny (z') TN,

Finally:

: . W .U W k V

W (2, = O (9 (D), = (N (N (1) TO), = (M (2,

Now, f is injective; for if f(a) = o, then Ng (z) = o and z (hence y)
represents the zero morphism, thus a = o.

Also, f is surjective; for if y ¢ (SX (N)), then there exists an element

z € h(SX(N)) with z, =y. Take an element v ¢ h(N(U)) representing-z, then
put a = (N*)E (v,) and one easily checks that f(a) = vy.

Second step: in view of Prop. 2.5 (a' (N)), and a(N,) are both in o(R).

Isomorphism will follow from the stalkwise isomorphisms. For every x € X:

S, (@' (N),) ™S, (" (M), =S (W, =S N) ~ S (a W)

(3.5): The example given in section 2 shows that the compactness condition

cannot be dropped.




1.

4, HOMOGENIZATION OF KERNEL FUNCTORS

functor ¢ in C is a left exact subfunctor of the identity such that

o(C/a(C)) = o for every C € Ob(C). An object C of C is called o-torsion

......

M > M > 0

 with M o-torsion may be completed commutatively. If g is unique as such,

C is called faithfully o-injective or o-closéd. With every object C of C

we may associate (in an essentially unique way) a o-closed object QG(C),
containing ¢/o(C) = C such that Qg(C)/E is o-torsion. More details on

localization may be found in [3, 5, 6, 8].

(4.2): If ¢ = R-mod, there is a 6ne-to-one correspondence between idempotent

kernel functors and idempotent filters L of left ideals of R, i.e. satis-

fyihg:

1. I e, IcJ, thend ¢ L

2. I, J e L, thenINJ el

3.’T €L, x€R, then (I : x) ¢ L

4. if 1 is a left ideal of R, J ¢ L such that (I : x) ¢ L for all x ¢ J,
kthen Iel.

‘With every idempotent kernel functor o we associate the set L(c) of left

jdeals I of R such that R/I is o-torsion. Conversely, to an idempotent

filter we associate the kernel functor o : o(ND ={meM| 3T el : Im=o}




4.3): If C = 'R-gr, we will restrict attention to rigid kermel functors, 1i.e.
idempotent kernel functors such that M(n) is o-torsion if M is o-torsion
(M(n)m = Mm+n)' Recall from [7] that there exists a one-to-one correspondence
between 'rigid kernel functors and filters L consisting of graded left
R-ideals satisfying: |
1.1€el,IcJ, thend el

2. 1, Jel, thenIndJdel

[o]]

. I el, xehR), then (I : x) ¢ L
. If T is a graded left ideal of R, J € L such that (I : x) € L for all

S

x € h(J), then T ¢ L.

(4.4): In the sequel, R will be a graded ring. Let o be an idempotent kernel
functor  in R-mod with corresponding idempotent filter L(c). Now, define:

L(o") = {I graded left ideal of RITl : I, ¢ L(0)}

(4.5): Proposition: L(o*) satisfies the condition of (4.3), hence L(c*)
corresponds to a rigid kernel functor in RIT]-gr which we denote by 0*.

c;* is called the Ii_g@g‘_gﬂe’niz'edﬂ kernel functor of o.

Proof
1.1 € L&), TcJ, then I, c J, and by (4.2.1), J, ¢ L(c), whence J ¢ L(c )
2. 1, J ¢ L(o»*), it is easily checked that I, n J, = (I n J)y € L(o) |
(by 4.2.2), whence 1 nJ ¢ L(o*)
3. 1 ¢ L(_G*'_), x ¢ h(RIT1), then (I : x), = (I, : x,) € L{o) (4.3.3), thus
(1:% ¢L(0)
4. Let I be a graded left ideal of RIT] and J ¢ L(O'*) such that (I : x) ¢ L(o*‘)
for all x € h(J), then:
(I :x), =1, :x,) ¢ L(o;j for all x, ¢ J, and therefore (4.2.4)

*
I, € L(o), whence I ¢ L(o).

12.




13.

(4.6) lemma: If M is an "admissible" graded left R[T] -module (i.e. M c NI[T]

for some N ¢ R-mod), then: (o* M), = oM.

Proof

If x ¢ (cy* (M))* then we can find an element y ¢ h(o*(M)) such that y, = X,
thus there is an I ¢ L(o*) : Iy = o. Therefore I, y, =1, x=0 and by
definition I, € L (o) yielding x € o(M).

Conversely, if x € o(M,) there exist an I € L(o) such that Ix = o. Further,

* -k k _

there isany ¢ h(M) : y=x T and T ¢ L(o*). Finally, ™ y = (,I"x)* T 0

and thus y ¢ o (M) and hence x ¢ (O* @), .

(4.7): Recall from [4] that there exists an exact functor
(=), : R[T-gr ~ R-mod : M), = M/(T-1DM. When M is an admissible graded

left R[T]-module (cfr. 4.6), M), =M,.
(4.8): Theorem: If M is an admissible graded left R-module, then
Qg(M*‘) = (Q%k M) N (more details on graded modules of quotients can

be found in [7]).

_I_Droof

" If M is an admissible graded left R-module, so is Mo (M), for,

WD » NITI/ (N T ) » NI /o) [T] = (Vo) [T1.

Thus, we may restrict attention to admissible o -torsion free graded left
modules. It follows from lemma 4.6 that M, is then o-torsionfree. We have

the following exact sequence in R[T]-gr (cfr. [4]):

o > M QG () ——> & BB /M) — o

where E&(M) denotes the injective envelope of M in RI[T]-gr.




14.

Exactness of (—)* yields an exact diagram in R-mod:

> (@ (M) ——> (ox (EF () /M) ,—0
30 o)

Further, it is left to the reader to check that (o*(M)) x > o(@),) for
every M ¢ R[T]-gr. Therefore, (o* (Eg (M /M), is o-torsion, whence we get
a canonical inclusion:

@ 09),-Q (M) |
Conversely, suppose X € QG(M*) then we can find a left ideal T in L(o) such
that Ix € M, whence ™ x“'r € (M*)*. For every i € h( I*.) consider the

following:

{r ¢ R[T] : rie (M: x*)}

f

(M:x) 1)
fr € R[T} : i X €M}

ix ¢ (M*)*, thus we find a natural number k such that Tk ixt ¢ M, whence
T ¢ () D). (19, =R, hence (TN ¢ L(6™) and therefore

(M : X ¢ i) € L&) for all i ¢ h(I"). Naturally, T" ¢ L(c") and by
(4.3.4), M : x*) € L,(o*) or, equivalently, X ¢ Qi*‘ M.




15.

5. DEHOMOGENIZATION OF KERNEL FUNCTORS

(5.1): Let o be a rigid kernel functor in R[T]-gr with associated filter
L(c). Now, define:
L(’_c*,) = {I left ideal of R : I* ¢ L(0)}

(5.2): Proposition: L(c,) is an idempotent filter. The corresponding

idempotent kernel functor g, in R-mod will be called the dehomogenized

*

kernel functor of d.

Proof. |

1.1 ¢llg), IcJ, then ¥ ¢ J* and hence J ¢ L(o,)

2.1, J ¢ L(g,), then (10 I =1 nJ" ¢L(e), thisInJ e Llg)

3. T ¢ L(,), x € R, then (I : X) ¢ L(o), thus (I : X) ¢ L(o,)

4. Let (1: %) ¢ L(g,) for all x € J € L(o,), then (I" : X) € L(o) for all

& e h(J*), whence 1* ¢ L(0), or, T ¢ L(cr*).
(5.3): Theorem: There is a one-to-one correspondence between idempotent
kernel functors in R-mod and rigid kernel functors in R[T}-gr such that

(T@) is an element of the associated filter for all £ ¢ N.

Proof.

If o is an idempotent kernel functor, by (Prop. 4.5) G isa rigid kernel
functor in R[T}-gr such that (Te) € L(o*) for all n ¢ N. Clearly,
(@M,
el
™,

Conversely, if ¢ is a rigid kernel functor in R[T]-gr such that (’I“e’) ¢ L(o)

o, for, T ¢ L((5"),) if and only if T ¢ L(c") if and only if

I ¢ L(0); whence L(v) = L((o*)*).

for all n ¢ N, then (¢)* = 0. I ¢ L((q)") if and only if I, € L(g,),




if and only if (I*')* ¢ L(0). To complete the proof it remains to show that
I¢L(e) if (I,)* € L(o). Take i € h((I)"), then:

(I :1i)={r ¢RI[TI; ri € I}. There exists a natural mumber £ such that
’I“e i ¢ I, whence (T@) c (I :1). Because (TE') € L(o), so is (I : i) and

(4.3.4) finishes the proof.

(5.4): Proposition: IfR is a positively graded left-Noetherian ring,
Mc N and N € R-gr such that N is o-torsionfree, then;

~ 0% | -
Q @ = Q% () as R -modules.

(¢}

By [4, 71, Qi* (M*)o = 1_1;m HOM(I, M“)O where the direct limit is taken over
all graded left ideals T contained in L(c*) . Let a ¢ Qi* M f)o be represented
by a gradation preserving R[T]-module morphism £ : I - M'. Define a |
mapping £, : I, -+ M in the following way: if x ¢ I, and y ¢ h(1) such that
Y, = X, then £, (x) = (£, - This mapping is well defined, for, let y'

be another homogeneous element of I such that y, = X, then we can find a
natural number n such that e.g. yTn = y', whence

EO"), = EGTY, = (Tf(), = EO)),. Further, £ is R-linear, for,
take y, z ¢ h(I) such thaty, =v, z, =W then there exists a natural

number n such that e.g. y + T 2 ¢ h(I) and:

£ W) = Ey+ T ), = EO, + @ £@2), = £, O + £ .

For every r ¢ R we have:

£, (v = 0Ty, = @ £0)), = TED), =T £, ).

Thus £, ¢ HomR (I,, M. Letb bé the element of Qo (M) represented by £ .
This enables us to construct a map:

h: Q8 of) —MQ, 39 by h(a) = b.

First, let us check that h is Ro—linea'r. Let a resp. a' be represented

16.
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by £ resp.‘f' on I, then for every y € h(I) we have that:

(E+£' (), = (EG) + £100), = EM), + (E'()), and therefore

h(a+a’j = h(a) + h(a'). Forevery r ¢ Ro and every y € h(I) we have that
(D (), = (r.£(y)), = r(£(y)),, hence h(ra) = rh(a). Further, h is
injective, for let a be represented by f on I and suppose that h(a) = o,
then we can find a left ideal J ¢ L(o) such that f, | J = o, whence

£ | FnI-= 0, implying that a = o.

h is also injective. Let b ¢ QO (M) be represented by a morphism

f ¢ Homp (I, M) with I ¢ L(¢). Let I be generated by .i‘], ceny in and denote
f(i,k) = Yi' Now let |

r = max{deg (%), ..., deg (i), deg (), -+, deg (7)) and take

* *
o, redeg(iy) » r-deglyy)
1& = 4p..T ; yi = YT BN
Let 1' be the graded left R[T} -ideal generated by the i; (hence I' ¢ L(c*))
and left & be the gradation preserving mapping £, M*;
f.* (}r1ia MEERERR g o i‘r'l) = r1y% e b yI»'1 where T € R[] .
£ is a well defined mapping, for, let zr, ii = ZS, ii ¢ h(I") (i.e.

deg r; = deg r; =m for every‘i), then z(ri)* i,

; < 2(s)y i; implying that

Z‘,(‘ri) Vi = % (s i)* Vi Now, suppose that A y; # 284 y; then
z(ri)* y; # Z(‘Si)* Yis @ contradiction. By construction f is clearly RIT]-

linear and (f*)* = f.

(5.5): Proposition: In the situation of (5.4) with R o-torsion free,
Qc (R) and Qi* (RIT] ])O are ring-isomorphic under the identification of

Prop. (5.4).

P'roo'f.
Recall that if a, b ¢ Qi* (R) o (resp. ¢ QO, (R)) are represented by f on I

and g on J where I, J ¢ L(o*) (resp. ¢ L(o)) then a.b is the element
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represented by gof on f£(I). Thus, h(a) .h(b) is represented by

g of, on £;1 (I,), i.e. for every x ¢ £;1 (I,) and every y € n(e (D)
such that y, = x we have: g, of, (x) = g, (£(y),) = (gof(y)),, whence
h(a.b) = h(a).h(b).

(5.6): Proposition: In the situation of (5.5) with R o-torsion free,
Qc (M) and Qg* GM*)O are isomorphic as Q0 (R) -modules modulo the

ring-isomorphism of Prop. (5.5).

Proof

Similar to the proof of Prop. 5.5.
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6. SOME EXAMPLES

A: LAMBEK'S KERNEL FUNCTOR
(6.1): Let R be a graded rihg. Lambek's kernel functor oL, in R-mod is
determined by the filter: |

L(oL) = {I left ideal of R | va, b ¢ R : if (I:a) ¢ AnnR b, then b = 0}
Lambek's graded kernel functor o% on RIT -gr (cfr.[41) is determined
by the graded filter:

L(Qf) = {I graded left ideal of RITl | va, b ¢ h(R[T): if (I:a) ¢ AnnR[T]b’

then b = o}.
. 03 « | g *
(6.2): Proposition: (Oi)* = oy and (GL) = 0%

Proof

Let I ¢ L(GL) and suppose that there are homogeneous elements a, b of RIT]
with (I* ia) ¢ AnnR[T](b), then (I : a,) ¢ AnnR (b,) whence b, = o0

and also b = o. Thus, ™ € L(df). Conversely let 1 be avleft ideal in
L((&%)*) and suppose there are elements a, b ¢ R such that (I : a)c AnnR (b)
then clearly (I" : a") ¢ Amnpp (5%, thus b" = 0 = b. Thus Lop) = L((cF)e)-

The second statement is proved in a similar way.

B: LAMBEK-MICHLER KERNEL FUNCTORS
(6.3): Let R be a graded ring and let S be a multiplicatively closed system
of élements of R. With S we may associate an idempotent kernel functor
og in R-mod with filter: | |
L(os) = {I left ideal of R | yr ¢ R : (I:r) n s # @y

If U is a multiplicatively closed system of homogeneous elements of RIT],

define a kernel filter in RI[T]-gr by taking




L(og) = {I graded left ideal of R[T : ¥r ¢ h(R[T}), (I:r) n U # o}.
Let S be akmultiplicatively closed subset of R and let us denote with s
the set of all homogeneous elements X of R[T] such that x, ¢ S. Clearly
S*‘is a multiplicatively closed set of homogeneous elements of R[T].

(6.4): Proposition: (og)" = oft

Proof.

Take I ¢ L((OS)*) and suppose we can find an homogeneous element r in R[T]
such that (I:1) n & = . Suppbse there exists an element s in

(I, s 5,) NS, thus sr, in I,, then there is a natural number k such that
s Tk r is in I and S Tk € S*, whence (I, : r,) N S =@, contradiction.

Conversely, take 1 ¢ L(oé*). For every r € h(R[T]) we have (I:r) N s £ 0,

~ whence (I* : r*) nss# Q.

and let P be a prime ideal of R. The Lambek-Michler kernel functor asso-
ciated"with P p is determinded by the multipliéativgly closed set:

G(P) = {x ¢R | + € R, x ¢ P then T ¢ P}. P is a graded prime ideal of
R[T] (see 7.3). The graded Lambek-Michler kernel functor (cfr.[4]) asso-
ciated with P is determided by the set:

h(G(P*')) = {x € h(R[T}) : r € h(RIT]), rx ¢ P then r ¢ P'}.
(6.6): Proposition: (cp)* = og*

Proof.

[

In view of Prop. 6.4 we are left to prove that (G(P))* = h(G(P*)).

This is easy and it is left as an exercise to the reader.

20.
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(6.7): It is well known that the left ring of quotients S'] R of a ring R
with respect to a multiplicatively closed set S exists if and only if S
satisfies the so called Ore-conditions:

(01): s € S, r € R such that rs =0 then there exists an element s' € S
such that’s'r = 0. |
(0,): if r € R and s ¢ S then there exist elements r' ¢ R and s' € S such
that s'r = r's.

If R is a graded ring and S is a multiplicatively closed set consisting

of homogeneous elements, the left graded ring of quotients S—1 R exists

if and only if S satisfies the graded Ore-conditions (cfr.[4])

(O%):'s €S, r € h(R) such that rs = o then there exists an element s' € S
such that s'r = o.

(Og): if v ¢ h(R) and s ¢ S then there exist elements r' ¢ h(R) and s' ¢ S
such that s'r = r's.

g1

R is graded in the following way:
(S'] RJn ={a/s : a € h(R), s ¢ S and deg a - deg s = n}
In [4] it is proved that S satisfies the graded Ore conditions if and only

if S satisfies the Ore conditions.

(6.8): Proposition: equivalent are:
(1): S satisfies the Ore conditions in R

(2): S satisfies the Ore conditions in RI[TI .

PRS-

() = (2): In view of (6.7) it is sufficient to check the graded Ore
conditions:
‘(O%): S € S*, r ¢ h(R[T1) such that rs = o, then 1, s, = 0 and by (1) we

. R SRR ;
can find an element s' ¢ S such that s'r, = o, whence (s') (r,) = o.
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We may find a natural number k such that (s')* (r*)* Tk = (s')* T = 0.
(O‘%): Let r ¢ h(RITI) and s ¢ S*. By (1) we find elements T, € R, sq € S
such that sy 1, =71y s,. Finally there exist natural numbers £ and m such

that: ((s{)" ™) r = ()" ™ s finishing the proof.

(2) = (1): left as an exercise to the reader.

C: MURDOCH - VAN OYSTAEYEN KERNEL FUNCTORS

(6.4): Let R be a positively graded, 1éf‘t Noetherian ring and let P be a
twosided prime ideal of R. op p will be the symmetric kernel functor in
R-mod determined by the filter:

L(cR_P) = {I left ideal of R | Rs Rc I for some s ¢ R - P}.

Let P' be a graded twosided prime ideal of R[T]. cgm _p will be the
symmetric rigid kernel functor in R[T]-gr determined by the filter.
L(OI%['I'] pr) = {1 graded left ideal of R[T] | R[T] s R{T] < I for some

s € h(R[T]-P)}
(6.5): Proposition: OIg{[T] P (OR_P‘)*

Proof

Let I be a graded ideal in L(jo’}.g{m __P*) then we can find an homogeneous

element s in RIT] —P* such that:
R[T} s R[T] < I, whence R s, Rc I,. Bécause g = (‘s*')* ™ and T ¢ P*,
, € R- P, thus I € L (op_p) -

Conversely, let I be a graded ideal of L( (o'R__P)*) then there exists an

element s, in R - P such that R's, Rc I, whence R[T] s R[T} < I for

some element s ¢ R[T] - P*.

22.
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7. NONCOMMUTATIVE AFFINE AND PROJECTIVE SCHEMES

(7.1): If R is a left Noetherian prime ring, Spec R will be the set of all
proper ideals of R. To any ideal I of R the set V(I) = {P ¢ Spec R : I < P}
is associated and taking the sets X(I) = Spec R - V(I) for the open sets
defines a topology on Spec R, called the Zariski topology.

To any ideal I of R we associate the filter:

L(oI) = {left ideals L of R such that ™c L for somen € N}.

Assigning QI (R) to X(I) for evéry ideal defines a sheaf of ndncommutative
rings on Spec R (cfr. [6]), ﬁ, called the structure sheaf. Spec R with

the Zariski topology and the sheaf R is said to be an affine scheme.

(7.2): If R is a positively graded, left Noetherian prime ring, Proj R
will be the set of all proper graded prime ideals of R not containing

R, = @ R. Endow Proj R with the topology induced by the Zariski
n>0

topology of Spec R as follows. Put for any ideal I of R:

V, (I) = {P ¢ Proj R : P > I}, X+,(I) = Proj R - V_ (I). In these
definitions we may replace I by the smallest graded ideal of R containing
I, so I may be supposed to be graded.

The sets X, (1), I varying in the set of graded ideals of R, exhausts the
open sets of Proj R. To an open set X, (1) the rigid kernel functor

g% is associated, i.e.

L(g%) = {graded left ideals L of R such that ™c L for somen ¢ N}.
Assigning‘(Q% (R))O to X, (I) for each graded ideal I of R defines a
sheaf of nonéammutative rings on Proj R, ﬁ, called the‘structure sheaf

on Proj R.
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(7.3): Proposition: If R is a positively graded ring, then
Proj RIT] = Proj R U Spec R and Spec R is homeomorphic with X, ((T)).

vEroof.

If P is a graded prime ideal of R{T] containing (T), then P = p + (T)

where p = P N R is a graded prime ideal of R not contained in R, because

P ¢ Proj RIT] and R[T], =R+ (T). Thus we obtain a one~to-one corres-
pondence between Proj R and V, (T) given by: ptp + (T).

If P e X, ((T), it is easy to check that P 1is a proper prime ideal of R.
Further, (P*)* = P, for, if a ¢ (P*)* we can find a natural number n such
that T a € P, whence T R ¢ ¢ P and thus a € R because Tn ¢ P. Therefore,
(—)* : Spec R ~ X, ((T)) determines a one-to-one correspondence which is
easily seen to be a homeomorphism since P ¢ V(I) if and only if

P e X, (M) n v, 1.

(7.4): From Prop. 5.5, Prop. 6.5, the preceding remarks and lemma 14.7 of

[4], it follows that:

N o ~
RITI | X, ((T)) =R as ringed spaces.

In particular, if R is a left Noetherian prime ring P®* ®R) =RIT, ..., T]
/“""\_,——/ © n

may be covered by n + 1 copies of AP (R) = R[S1, eevs Sn]’ yielding the

desired noncommutative analogue of the classical commutative result.
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