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O. INTRODUCTION

The abstract theory of localization in Grothendieck categories has reached
a more or less final form, as expounded in [1, 4, 7]. Fowever, an important
gap in the theory is the lack of a manageable substitute for idempotent
filters, the use of which simplifies matters a lot in the module case.

The first attempt to overcome this problem is due to A. Verschoren [8].

To an idempotent kernel funtor c‘in a Grothendieck category with generator
G, he associates a filter L(G,c) consisting of those subobjects G' of G
such that G/G' is o-torsion. However, these filters seem to be an in-
adequate tool in many applications such as graded modules, sheaves and
presheaves, etc. In these cases, we usually have an infinite family of
generators {Gi; i ¢ I} and, although it is natural to impose conditions
(Noetherianness, smallness, ...) on each of the Gi's, it seems hopeless

to impose any condition on the generator &Gj.

On the other hand, if one tries to copy results from the module case to
"arbitrary'' Grothendieck categories using properties of these filters
(cfr. e.g. [91, [10]), the generator has to satisfy very restrictive
conditions. For instance, in order to prove the claimed one-to-one
correspondence between hereditary torsion theories and the filters
 mentioned above [8], the generator has to be a small and'projective
object, leaving no Grothendieck categories left but the module categories,
cfr. remark 2.10 below.

The purpose of this paper is to remedy these problems by associating to
each of the G;'s a 'local filter'". These filters behave like the
classical idempotent filters, modulo the natural restriction that whenever

Gi and G. are related, the corresponding filters have to be related, too

J
(Prop. 1.7). Again, o-torsiomness, o-injectivity, o-neatness etc. can be

described entirely in function of these local filters (Prop. 1.8, 1.10, 3.6).




In section two, we treat the 'cohesive' case (cfr. def. 2.2). In this

case, we can associate to each of the local filters L(Gi, o) idempotent
kernel functors S the "local components" of o. o may be recovered from
them by taking the infimum, admitting a local-global lemma (2.8). A com-
bination of these results yields a one-to-one correspondence between
idempotent kernel functors and families of related local filters (Prop. 2.9).
In the third section we give some examples how conditions on the local
filters yield global information about the classes of o-closed, c-injective,
o-torsion ... object (Prop. 3.2, 3.4, 3.8). The attentive reader will
verify that these proofs are mere adaptations of the classical module-
proofs (cfr. e.g. [2], [3]), using a Yoneda-lemma like argument (replacing
elements by morphisms) and some weak conditions on the family of generators.
Using the same techniques one may derive many more local-global results
which are of particular importance to localization in semi-noetherian and
locally Noetherian categories. The author aims to return to some of them
in a subsequent paper.

Necessary background on localization and Grothendieck categories may be

found in[1, 2, 3, 4, 6].




1. LOCALLY ASSOCIATED FILTERS

(1.1): Let C be any category. Recall that a set of objects

{Gi; i €I} of Cis said to be a family of generators for C if for each

object M of C and each proper subobject N of M, there exists a morphism
¢+ 6> M for some i € I which does not factorize through the inclusion
N -+ M:

G - M

We say that G is a generator for C if {G} is a family of generators.
Clearly, {G:i; i € I} is a family of generators if and only if

® Gjisa generator.
iel

(1.2): Some examples

(a) The category R-mod which consists of all left modules over a ring

with unit R, has a generator G = Ry, where Rg denotes R, viewed as a left

R-module.

(b) Let R be a graded ring with unit. R is not a generator of R-gr, the
category of all graded left R-modules with morphisms of degree o (cfr. [51).

We have a family of generators {R(i) , i € Z}, where the R(i)» are defined

as follows: (R(i)).n =R i

(c) Consider n (R, X), the category of presheaves of left R-Modules over
a topological space X. The presheaf of rings R is usually not a generator.

For any open subset U of X define Ph by:




TRy, V) =( TR, V) if V cU
{o ifV ¢U

It is easily checked that {RU; U ¢ Open(X) } is a family of generators
for (R, X).

(1.3): Throughout, C will be a Grothendieck category with a family of
'generators, hence with enough injectives.

A torsion theory for C is a pair of classes (T, F) such that:

(1.3.1): HomC (T,F) =o for all T ¢ T, F ¢ F
(1.3.2): If Hbmc (C,F) = o for all F ¢ F, thenC ¢ T

(1.3.3): If Hom,, (T,0) =o for all T ¢ T, thenC ¢ F

T is called thé—torsion class and its objects are torsion objects, while
F is a torsion-free class consisting of torsion-free objects. A torsion
theory (T, F) will be called hereditary if and only if T is closed under
subobjects. A class T is a torsion class for some hereditary torsion

theory if and only if T is closed under quotient objects, direct sums,

extensions and subobjects.

(1.4) A kernel functor in the Grothendieck category C is a left exact

subfunctor ¢ of the identity. It is idempotent if for each object C of

C we have: o(C / s(C)) = 0. C is called o-torsion if o(C) = C,

o-torsion free if o(C) = o.

(1.5) Recall that in a Grothendieck category C there is a one-to-one
correspondence between idempotent kernel functors and hereditary torsion
theories: to a kernel functor ¢ we associate the torsion theory

CTG, FG) where T0 (resp. FG) consists of the o-torsion (resp. o-torsion

free) objects, conversely, to a torsion theory (T, F) we associate




the kernel functorc which to each C ¢ Ob (() associates the largest

subobject of C which lies in T.

(1.6): Let {Gi; i € I} be a family of generators for ¢ and define for

every Gi the following class of subobjects:
L(Gi g = {1 <Gi : O(Gi/I) =Gi/ Iy

where . < . denotes : subobject of.

(1.7): Proposition: In the situation of (1.6) we have:

——t

. J € LG ¢ o), J c Kthen K ¢ L(G; ¢ o)
2. J, K ¢ L(Gi : o) thenJ N K ¢ L(G‘i )

) -1. .
3.J ¢ L(Gi T o) 300 Gj —*Gi’ then ¢ (J) € L(Gj )

4. J < Gi and K ¢ L(Gi : o) such that for every G. = Gi

J
(i.e. Homc (Gj, G'i) # 0) and every morphism ¢ : Gj -~ K we have

®—1(J) € L(G:j : o) thenJ € L(G; : o)

1.0~ Gy / X~ Gy / J and Tcy is closed under taking subobjects
2. 0~ Gi /Jn K-> Gi / J @ Gi / K and TO is closed under direct sums
and subobjects.

3. We have the following exact diagram

PR Y ) — G > G /o (@) >0
lw l ® \4
o) > J A'Gi #Gi/J > 0




where ¥ is the induced mapping, which is readily seen to be injective.

Hence, Gj / @-1 (J) is o-torsion, because Gi / J is.

4. We have the exact sequence:

o] —asXK /I NK ——-—»-Gi/J——————-—-*Gi/J+K-—-————-———>o
Now, clearly Gi / J + K is o-torsion as an epimorphic image of Gy / K.
Suppose o(K / J N K) =L/ InXKwith L7, K, then we can find an index

j € I and a morphism ¢:

#

Lf

which does not factorize through L. Clearly cp-1 3 = ¢_1 dNnK ¢ L(Gj, o)

and we have the following exact diagram:

0—————-'*@-‘1(;1 n K >Gj ij /(p—1(J N X) =—o0
l ® l ® lW
0————rImy N1 J N K —» Imy sImy / Imy N J N Ke—->o0

l l)

where ¥ is the induced mapping, which is also surjective. Thus,

Imy / Im¢y NI N Kot Imy + (I N K) /J N K is o-torsion as an epimorphic
inage of C; /o 1IN K. Finally, L /JNKLJI+Imy+ GNK) /JINK,
a contradiction, whence K / J N K is o-torsion.

Because To is closed under extensions, it follows that Gj / J is o-torsion.




(1.8): Proposition: Let o be an idempotent kernel functor in C.
M € Ob(C) is o-torsion if and only if for every i € I and every morphism

¢ : G; > Mwe have that Kere € L(G; :0).

Proof

If M is o-torsion and v : G; > M, then we have an exact ‘sequence:

o> Ker ¢ >G; > Imo ™ Gy / Xer ¢ > 0. Im o ¢M, hence it is o-torsion,
therefore Ker ¢ € L(Gi : o). Conversely, suppose for every ¢ : G; # M,
Ker o € L(Gi, o) and G(M‘)cf;M. Then we can find an index j € I and a

morphism v:

ocM) < -1

which does not factorize through o(M), hence Imy £ oM).

Ker v € L(Gj, o) or, equivalently, Im y Gj / Ker v is o-torsion.

Finally:

0 —mm— > oM) ————>»c(M) + Im v —_sImy / oM N Imy ——>0

o) and Imy / o(D N Imy are o-torsion, hence so is o) + Imy . This

forces Im v € o(M), a contradiction. Therefore, M = o(M).

(1.9): An object E of C is called o-injective if any diagram:

0 —C' > C v > C" > 0




with exact top row and C" o-torsion may be completed by g to make it commu-
tative. If g is unique as such, then E 1is said to be o-closed. Recall
from [ 7] that E is o-closed if and only if C is o-injective and o-torsion
free.

To each object C of C we may associate in an essentially unique way a
o-closed object Q, (C) containing C =C/ o(C), such that Qo_(C) / C is

o-torsion. Qg (C) will be called the object of quotients of C at o.

If we denote by C(0) the full subcategory of C consisting of all o-closed
objects in C, then Qo (-) is easily checked to define a left adjoint to
the inclusion i0 : Clo) » C. Therefore, QO (-) is a left exact endofunctor
in ¢. The following proposition is an adaptation of a similar statement

due to A. Verschoren [8] for one generator.

(1.10): Proposition: A necessary and sufficient condition for E to be

o-injective is that each diagram

with J € L(G;, o)} i ¢ I, can be completed commutatively.

Proof

Consider a diagram

> N ~ N

v
O

4
e 2
S




where N'"' is o—torsion. We have to show that ¢ extends to a map

® : N> E. Look at the set of all couples (N*, cp*) with N' ¢ N* ¢ N
(hence: o(N / N*') =N/ N*) and cp* : Ni'r - E a morphism extending o.
zorn's lemma provides us with a largest couple of this kind, say N, 3).
Suppose that Nc‘i N, then we can find an index i ¢ I and a morphism

y:G; >N, which does not factorize through N. We have the following

situation:

° Ji\ /Gi >Gi /Ji > O
0 ¥ N <« >Im v
\ / -
V’ /’

-~
(-D -
-
-
-
-
-
-

&

e D D —
\
\
A\
\
\
\
>4

where I. = Y_1(N), J; = Ker y. As N is o-torsion, I; € L(G;, o). The

map o ol : I; > E extends to a map \ : G; - E, which factorizes through

G; / J4» as J = Ker v ¢ Ker X As Gy / J5 = Imy, we get a map »: Im vy -+ E.
Because Im v ¢ N, N;N+ Imy=NCN. Now, definec; : ﬁ»Eby

o | N =5, o | In y = % This is a well defined morphism, contradicting

the maximality of (N, ). Thus, N = N.




10.

2. THE COHESIVE CASE

(2.1.): An object C of C is said to be small if HomC (C, =) commutes

with direct sums. A Grothendieck category C will be called locally small

if it has a family of small generators.

(2.2.): Definition: A family of generators for C, {G;; i e I} will be
called cohesive if every G; is a projective, small object such that

if and only if Hbmc (Gi’ Gj) # 0, is a partially

{Gl’ < }, with Gl = GJ

ordered set.

(2.3.): Some examples:

(a): (cfr. 1.2.b), R(i) < R(j) if and only if Ri—j # 0. The family of

generators {R(l); i € Z} is cohesive if R satisfies the following condi-

tion: if Rn # 0 and Rm # o0 then Rn+m # O.

®): (cfr. 1.2.c), RTJSI{ij and only if U ¢ V. The family of generators

{RU; U € Open(X)} is cohesive.

(2.4.): For every i € I, define a class TO consisting of exactly those
i
objects M of C such that for every Gj = G; and every morphism

¢ Gj -+ M we have that Ker o € L(Gj, o).

(2.5.): Proposition: If the family of generators {G; : i € I} is cohesive,
then TO is a torsion class for some hereditary torsion theory, for all

i
i€ I.




Proof

M: TG is closed under taking subobjects. Take i : NesM, where
i
M ¢ TG_, then for every morphism v : Gj - N with Gj = G; we have:
: i
Ker v = Ker (i o v) € L(Gj, o) .

(2): T'O' is closed under quotient-objects. Take n : M - N » o with
i
M e TO . Let ¢ be any morphism from Gj to N for some Gj < Gi’ Because
i
Gj is a projective object, we can 1ift ¢ to a morphism § : Gj - M.

Finally, Ker ¢ ¢ Ker ¢ and Prop. 1.7.1 finishes the proof.

(3): Toi is closed under direct sums. Let M : a € A} be a family of
objects in Tci and o : Gj -+ M with Gj = Gj. Because Gj is a small
object this morphism factorizes through a finite sum:

ol

M

nmass

] x

® 1
a € A

Ker ¢ = Ker ¢ >

o3

Ker ("a o ¢) where U denotes the canonical

k=1

projection. Now, the result follows immediately from 1.7.2.

4): T(7 is closed under extensions. Assume that we have an exact sequence
i
in C.

o > N' >N > N' —-0

with N' and N" in T_. For every G; = G; and o ¢ Hom, (G5, N), put
1 | —
I =Ker (mog), then I ¢ L(Gj, o), then we have to show that for each

11.

V€ Homc (Gk, I) with Gk = Gj’ we have that \!/-1(J) € L(Gk, o), cfr. Prop. 1.7.4.

Consider the commutative diagram with exact top row:




o}
4

Clearly, ¢71(Ker o) = ¢"1GJ) = Ker (p o j o ¥, and because ¢ o J o
can be viewed as an element of HomC (Gk, N'). Since N' ¢ 75_ and

= ; i
{Gi, < } is partially ordered, we have that ¢-1GJ) € L(Gk, o), which

finishes the proof.

(2.6.): The idempotent kernel functors o associated with the torsion
i
classes To. will be called the local components of o. We will show that
i
o is completely determined by its local components.

Recall that o = v if and only if T ¢ T

(2.7.): Proposition:
1. If Gj = Gi’ then o; = Cj

i
Proof
1. Follows immediatly from the definitions and the fact that -

{Gi’ < } is partially ordered.

2. Is nothing but a reformulation of Prop. 1.8.

(2.8.): Corollary (local-global lemma)

If M, N € C(0), then a morphism ¢ : M~ N is an isomorphism if and only if

Q @ :Q 0D -Q (N)is an isomorphism for all i ¢ I.
O'i Oi Gi

12.




13.

Proof

Localizing o ~ Ker ¢ > M > Im¢ » 0 at oy implies Qci (Xer ¢) = 0, oOr
equivalently, Ker ¢ is ci—torsion for all i € I, hence o-torsion. But
as M is o-torsion free, Ker ¢ = o.

Now, localizing o » M = N - Coker ¢ -~ o gives for all i € I:

o>Q 0D ->Q M) ~Q, (Coker o).
1 1 1

Thus, Coker ¢ is oi—torsion for all i € I, hence o-torsion. But, as the
quotient of a o-torsion free object module a o-closed object has to be

o-torsion free, Ccker ¢ = o.

(2.9.): Combining the results of section 1 and section 2 we get the

following

Proposition: If C is a Grothendieck category with a cohesive
family of generators {Gi; i € I} then there is a one-to-one correspondence
between
1. hereditary torsion theories in C
2. idempotent kernel functors in C
3. families of classes {L; i € I} satisfying:

(a) L.i consists of subobjects of Gi for all i €¢I

(b) If J, K¢ Li’ then J N K ¢ Li

() If J ¢ L, J<K<G;, then K€ Ly

@ IfJ< Gi and X € Li such that for every Gj < Gi and every morphism
o Gj - K, we have @~1 J) ¢ Lj’ then J € L,

Y, "1
(&) If J € LG, o), G5 =Gy and ¢ € f,.omg (Gj, G,), then o™ (J) € L(G;, o).




14.

(2.10.): The foregoing proposition shows why it is inadequate to restrict
attention to one generator. In order to get a ohe—to-one correspondence
between idempotent kernel functors and filters one has to impose projectivity
and smallness on the generator G, implying that C is a module category,

for, Hom., (G, -) is exact and commutes with direct sums.




15.

3. SOME LOCAL-GLOBAL RESULTS

(3.1.): Let o be an idempotent kernel functor in C, C ¢ Ob(C). The
ngilter" L(C, o) = {C' <C: o(C/C')=C/C'}is said to be

o-Noetherian if it has the following property:

if Gy < Cy < eve < Cn < ... is an ascending chain of subobjects of C such
that U Cn € L(C, o), then there exists a natural number k for which

Ck € L(C, o).

(3.2.): Proposition: Let o be an idempotent kernel functor in a
Grothendieck category C with a family of generators {Gi; ielIy.
Consider the following statements:

1. L(Gi, o) is o-Noetherian for all i ¢ I

2. gﬁo) is closed under taking direct sums

3. QG (-) commutes with direct sums.

If the Gi's are small objects, then the following implications hold:
M =@ = 0.

If the Gi's are finitely generated; then the three statements are

equivalent.

(1) = (2): Let {M0 : ¢ € A} be a family of o-closed objects. Let us denote:
M=aoM, M! =11Ma and M, M! > Ma the canonical projection. Both M and
M' are clearly o-torsion free, so we have to check o-injectivity of M.

In view of Prop. 1.10, it suffices to complete every diagram:

i




where J ¢ L,(Gi, 0. Since each M(I is g-closed, there exist morphisms
By Gy ~ Ma extending M, o f. These maps define a morphism

B = g : G, »M'. If we can prove that 3= {q € A B, # 0} is finite
a 1

then g factorizes through M and the proof is complete. Now, suppose g

is infinite, then we can find a countable infinite subset

{ag, 0y ey oy eee} of 3. For each positive integer j we can define

a subset Jj of J:

J.=Ker ( m B_ oip. Then, J, <J, < ... is an ascending chain

J k - j a J 1 2 +

of subobjects of Gi with U Jn = J, for suppose U Jnc__,J , then we can

find an index j ¢ I and a morphism v

- {. o
uJdy >

which does not factorize through U Jn' Now,

forxc€ Homg (Gj, M) ~2 Hom_c_ (Gj, M ) because Gj is sinall, hence there
are only finitely many oy such that nak o £ o y # 0, therefore «
factorizes through U Iy 2 contradiction.

Using o-Noetherianness of L(Gi, o), we can find a natural number

L : JZ € L(Gi, o). If k= ¢ then Bik (J!Z) = 0 and so Bik induces a mapping
Gi / JIZ -~ M'. Now Gi / JK is o~torsion and M' is o-torsion free, thus
this morphism must be the zero map. Therefore Bik = o for all k = g,
contradicting the initial assumption that 3 is infinite.

(2) = (3): exactly as in the module case, no assumptions on the generators
are necessary.

(3) = (1): assume that every Gi is finitely generated. Let

Jy<Jy< .. be an ascending chain of subobjects of Gi with J =U Jn.

16.




Define Yy to be the composed morphism Yy J->J/ Jn > G / Jn and
Y=HYn : J—’I;IlGi/Jn-

Suppose vy does ‘not factorize through = Gi / Jn, then we can find an
n

index j € I and a morphism y:

-1, " N
y (;Gi/Jn) J=uJ

which does not factorize through Y_1( ® Gi / Jn). Because Gj is finitely
o
generated, ¥ € Hom (Gj, U Jn) = U Hom (Gj, Jn), hence,
n
Imy ¢ J for some m and therefore ¥ factorizes through

!
Y G Gi / Jk) a contradiction.

Since J € (Gi, o), there is a morphism ¢ making the diagram

\J
o)

o >J

|

@ Gi / Jn—-—-—-->~Qcy (= Gi / Jn)

coomute. By (3), QO (m® G; (Jn) = o QG (Gi / Jn) and because G, is a
n n

small object there exists an integer k such that ¢ factorizes through

3%
—

Q G5/ 3y

Now, pick h > k. Then Vig oM e s where i is the canonical projection

17.




18.

i Qo-(Gi /30~ QO_(Gi ARUNE is the zero map, whence

Im W, = J/ Jh < o(R/ Jh) which implies that J / Jh is o~torsion.

Finally, the exactness of the sequence:

o—————>J [/ J

h
implies Jp € L(Gi, o), finishing the proof.

—R / Jh-—————~———’-R /J » 0

(3.3.): As in the module case, o~Noetheriamness of L(Gi, o) does not
imply that L(Gi’ o) satisfies the ascending chain conditiom. If we impose

the ACC on every local filter we get a global result:

(3.4.): Proposition: If o is an idempotent kernel functor in a
Grothendieck category C with a family of f.g. generators {Gi; iel},
then the following conditions are equivalent:

1. L(Gi, o) satisfies the ascending chain condition for all i ¢ 1

2. The class of o-torsion o-injective objects is closed under taking

direct sums.

Proof
(1) = (2): Let My : a € A} be a family of o-torsion, o-injective objects
and let M= @ Ma. Clearly, M is o-torsion. In view of Prop. 1.10. we

have to complete every diagram:




with I ¢ L(Gi,' o). Mis otorsion, hence so is Im ¢ ~ I/ Ker 4.
Exactness of the sequence o -1 / Ker p - R / Ker p >R/ I 50
implies that Ker o € L(Gj, o e

For every a € A, m ¢ M > Ma will be the canonical projection.

We claim that the set 2 = {a € A M o P # 0} is finite.

Suppose that this is not so, then we can pick a countable infinite set
7 = {a1, a4y, ...} U A with m,e®# O for all n ¢ ]N}

Let Ay = (AN %) U {ags <oy I;n}.

Define I = '9-1 (@ M3 ac /\n}), then J1 <Jy < .ns is a strictly
increasing countable infinite chain of subobjects of Gi contained in
L(Gi, o), since Ker o ¢ J, for all n ¢ N. Therefore o factorizes through

@ {MB; B e @'} with @' a finite subset of . @ M ; B & @'} is clearly

o-injective and thus » can be extended to a morphismBy : Gi - M,

(Remark that one does not have to impose any condition on the generators

for this part of the proof).

(2) = (1): For every object A of C, define E_ (&) = o' (o(E() / A)),
where E(A) is the injective lull of A and ¢ the canonical projection

E(A) - E(A) / A. Exactly as in the module case, one can show that Ec A)

is o-injective and E (A) / A is o-torsion. ’

Let J € L(Gi, o), from the exact sequence:

0——> G / J——E (G / N— E; G /D / G/ IN—>0
it follows that E (G / J) is o-closed. Now, let J; < Jy < ees be an
ascending chain of subobjects of Gy contained in L(Gi, o) and put

J=UJ 3 By an argument similar to the one given in the proof of Prop. 3.2.,
one can factorize the natural morphism V¥ : J +T} E, (Gi / J j) through

M= @E_ (G / Jj). By (2), M is o-injective, hence Vv extends to a |

J
morphism v : G; = M. Finally, using smallness of G;, ¥ factors through

19.




58

a finite subsum, say,
J
which completes the proof.

, E_ (G4 / Jj)' but this implies J = J

(3.5.): A morphism ¢ : M' -~ M is said to be g-neat if and only if the

following conditions are equivalent for every subobject N' of an object

N such that (N / N') =N/ N' and for every morphism v : N' » M'.

1. There exists a subobject W of N properly containing N' and a morphism

¥ : W~ M making the following diagram commute:

:

Y
=,
—

2. There exists a submodule W' of N properly containing N' and a morphism

y' ¢ W' - M' making the following diagram commute:

;_N' \W'

(3.6.) Proposition: A morphism ¢ : M' - M is o-neat if and only if

the conditions above are equivalent for N = G; and N' = J ¢ L(G;, o)
for all i ¢ I.

20.




Proof
Let N' < N such that N / N' is o~torsion and v € Homc (N', M.
Suppose there exists a subobject W of N properly containing N' and a

morphism ¥ : W > M making the diagram below commutative:

£
0 N? —W
Y l l L4
(p
M! >M

We can find an index i ¢ I and a morphism 8 : G; »W which does not

factorize through N'. Now, let J = 8—1(N') , then we have the exact

diagram:
o)
o} - J “Gi "Gj‘/J————*-—?o
B B i h L
0 > N! > W >W / N' —————>0

when g' is the induced morphism, which is easily seen to be injective.
Since W / N' is o-torsion, J € L(G;, o). This gives us a subobject

K of Gj properly containing J and a morphism 5 such that

21.




22.

is commutative. Because Ker y ¢ Kers , 5 factorizes through

K / Ker yesIm y. Finally we have the diagram

K / Ker

o
Y
=

finishing the proof.

(3.7.): In the following proposition we will characterize in a global
manner those idempotent kernel functors o for which every L(Gi, o is

o~Noetherian and satisfies the ascending chain condition.

(3.8.): Proposition: Let o be an idempotent kernel functor in a
Crothendieck category with a family of generators {G,; iel)

Consider the following statements: |

1. L(Gy, o) is o-Noetherian and satisfies the ascending chain condition
for all i ¢ I,

2. Any direct sum of o-neat morphisms is o-neat.

3. Any direct sum of o-injective objects is o-injective.

Without restrictions on the set of generators, the following implications
hold: (1) = (2) = (3). If every G, is finitely generated, the three

statements are equivalent.

Proof
(1) = (2): Let {p, + M >M; a €A} be a family of o-neat morphisms;
M =M, M=e M, and o = ® ¢  t M > M In view of Prop. 3.6. it

suffices to check that every commutative diagram of the form:




23.

W
<
S
2

=
Y

with J', J ¢ L(Gi, o); implies the existence of a commutative diagram:

0 ' >J! > J"

N

with J" < J. First, we claim that p factorizes through

@ {Ma; o € 2} with 3 a finite subset of A. Let Myl M' - M('I be the
canonical projection and set 2 = {a € Z ¢ 7 o B # 0}.

Suppose that 2 is infinite, then 2 countains a countably infinite

subset Z' = {ay, ag, -} For eachn ¢ N,

2= (B \2) U fay, «ees o}, and define J; = e M a ez
Then, U Jn =J € L(Gi, o), and using o-Noetherianness we have

Jy € L (Gi, o) for some k € N. Finally, by the ascending chain condition
of L(Gi, o) there exists a j = k such that Jj = Jj+1 = ... and this
contradicts the fact that J; ¢ J, € is strictly ascending.

Thus, we are left to prove that the direct sum of a finite number of
o-neat morphisms is o-neat. This is easy and can be proved as in the
module case. |

(2) = (3): This follows simply by noting that an object E is o-injective
if and only if the zero map E - o is o-neat.

(3) = (1): This follows from Prop. 3.2. and Prop. 3.4. and the fact

that a finitely generated object is small.

(3.9.): These propositions indicate why locally Noetherian categories

behave well with respect to localization.
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