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0. Introduction.

In [9], M.E. Sweedler associated to every algebra A over a field K a
universal measuring bialgebra NK(A,A) and its maximal cocommutative
pointed subbialgebra HK(A,A). These objects may be used in several
domains, e.g. to cbtain a beautiful Galois theory, cfr. [8].

Over arbitrary commutative rings, these constructions cannot be gene-
ralized and one has to restrict attention to falois objects, as intro-
duced in [4], in order to get a more or less satisfactorv Galois theory.
However, the condition of beina a Galois object, muts severe restrictions

on the ringextension. A lot of "nice" extensions, e.q. the integral
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closure of a Dedekind ring in a finite Galois extension of its field of
fractions, do not necessarely fit into this Galois-object framework, as
an example &ue to Janutz [6] shows.

Therefore, it would be interesting to extend Sweedler's construction to
a nice class of rings, e.g. Dedekind domains. And with this note we

put thevfirst steps in this direction.

In the first two sections we associate bialgebras to orders, in the
sence of I. Reiner [7]. These constructions are similar to the ones in
[9] , modulo some technical difficulties, mainly stemming from projectivity
conditions.

In section 3, these bialgebras are avwlied to yield a Galois theory for
Dedekind rings which is, as one would expect, closely related to the
Galois theory of the corresponding fields of fractions.

In the final section, we have a brief look at the bialgebras associated
to orders in a central simple algebra Z. It is proved that for almost
all prime ideals these bialgebras are orders in the Hopf-algebra HK(Z,Z).
However, these results are far from being complete. For inétance, one
is tempted to conjecture that these bialgebras contain some information
about the corresponding noncommutative curves, in the sense of [1], [10].
Further, it might be possible to replace these bialgebras by automorphism
schemes, as in L. Béqueri [2].

At this time, however, these claims are rather sgpeculative and the

author aims to return to them in a subsequent paper.




1. Construction of MD(A,B) .

In this section we will associate to a pair of finitely generated pro-
jective D~algebras A and B, a universal measuring D-coalgebra MD(A,B) .

Our construction runs along the lines of M.E. Sweedler [9] modulo some
technical difficulties.

The main problem in generalizing Sweedler's construction to the ‘ring case
is to find a suitable substitute for A°, (cfr. definition below). However,

when D is a Dedekind-ring, this problem may be succesfully solved.

Definition 1.1 : Let A be any D-algebra,

*
A° = {g €A : Ker g contains an ideal I; A/I is f.g. and torsion free}

*
Remark 1.2 : A° is a D-submodule of A =HornD (A,D). Clearly A° is closed
under scalar-multiplication. The sum of any two elements of A° is again
in A° since A/INJ < A/1 ® A/J and therefore A/INJ is again f.g. and

torsion free.

Proposition 1.3 : Let A, B be D-algebras and f EAlgD (A,B).

* * *
(@) The dual map of £, £ : B - A sends B° in A°
_ * * * .
(b) Themap A ® B — (A ® B) restricts to A° ® B° = (A®B)°

*
(c) IfM: A®A~>A is the multiplication, then M (A°) ¢ A° ® A°

proof.
* *
(a) It is easy to show that if b €¢B° has JCKRer b , then

* - -
Ker £ (b) D £ l(J) . Purther, A/f l(J) «+> B/J and therefore it is f.g.

and torsion free.




(b) Iet K be any ideal in A ® Bwith A ® B/K is f.g. and torsion free.
Iet I =1{a€A : a®1l¢€¢K} then A/I is f.g. and torsion f.r'ee,‘ because
(see part a) it is the inverse image of K under the algebra map a#= a ® 1
of A to A ® B. Similarly, if J = {b€B:1 ® b €K} then B/J is f.g. and
torsion free. Note that A® J+ I ® B < Kand by £3, A. II.59, Prop.6]
A®B/A®I+I®B=A/I®B/J sOA®B/I1®B+ A®J is again f.q.
and torsion free (if A', B' are f.g, torsion free over a Dedekind ring D,
A' = I1 @ L,.. P In; B' = Jl D ,,. 4 Jm with Ii’ Jj fractional ideals, =0
A' ® B' = i(?j (Ii ® Jj) = A Ii Jj and is thus f.g. and torsion free).
Now suppose k- (A ® B)® with K< Ker c*, I and J as above. Then

¢ factors throught A/I ® B/J. That is, there exists a unique ¥ such

that the diagram below is commutative :

A®B —-

(1)
A/I®B/J

Thus, € ¢ B/TI®B/J = @/ ® ®B/3N* (D is Dedekind ring and

[3, A.TII.80, Coroll.l].

. . s . ) —* - =% =% —_ * —% *
Via this isomorphism, write ¢ = 2 di ® éi with di eE@A/1I) , ei E®B/J) .

In particular, for a €A /I, b €B/J we have :
—% —% —%
<¢c,a®b>=3<d,, a><e,, b>.
i i i

Now, 1if myr T, are the natural projections A - A/TI and B - B/J the

2
camutativity of (1) comes down to :

* ' —% —k —%
<c,a®b>=<c¢ , nl(a) ® nz(b)> = % < di ,nl(a)> < ey ,1T2(b)>. (2)

*  —* * *
Ietd, =d, o, 7,, then d. €A° because I = Ker n, CKer d,.
i i 1 i i

1




. * % o * * *
Similarly, e, =€ o TTZEB . (2) then becomes : ¢ =2 di ® e thus
(A®B)°Cc A° ® B°.
e X a0 * oy s . * .
Conversely, if d €A° (resp. e €B°) withI ¢ Kerd : A/I is f.g. and
*
torsion free (resp. J C Ker e : B/J is f.g. and torsion free) then
* * . .
AQRJ+I®BCKer d ®e ) and A®B/A®J+ I ®B is f.g. and torsion
free. SO A° ® B° ¢ (A ® B)°.
*x K *x % . * ‘ i *
(c) Fora €A ; a, b€A:<M (a),a®b>=<a, ab > If IcKer a with A/I
*
f.g. and torsion free, then A® I+ I®ACKRer M (a ) and
* .
A®A/AQ®I+I®Ais f.g. torsion free. Thus, M (A°) ¢ (A ®A?°

=A° ® A°.

* * *
Now, define A =M |A°: A° >A°®A%°ande : A°>Dbycla) =<a, 1>

Proposition 1.4 : (A°, A, &) is a D-coalgebra.

proof.

Similar to, M.E. Sweedler [9].

If A, B are D-algebras and f EAlgD (A,B). Proposition 1l.3.a. states that

* 3 * .

f |B® is a map from B® to A°. Denote £° = f |B°. A diagram chase shows

*

that f° is a coalgebra map. For any D-algebra A, A is a left A-module
* : *

with scalar multiplication defined by <b-a , a>=<a, @b > for

* * *

a €A, a,b €A. The right action is defined by<a « b, a> = <a), ba >.

This makes A* into an A-A-bimodule.

*
Proposition 1.5 : Let A be a D-algebra. For any f €A the following

are equivalent :




(a) £ €A°
*
(b) M (f) €A° ® A°
() M (£) TN
(@) A— f is f.g. and torsion free

() £~ A is f.g. and torsion free

proof.
(@) = (b) : since M (A°) ¢ A° @ A® (Prop. 1.3.c)
(b) = (c) : trivially
; * n % * * * * -
(©) = (@) : Tet M (f) = iél a, ® bi’ where a, s bi €A . By the definition
* n * x
of M we have : < £, ab>=i§1<ai, a><bi, b >.
bosf=.3 a <b, b> ¢ pa* +Da and so i
Hence =424y bi’ ’ thus (A= f) Dai + ... +Da and so it

is finitely generated. Now suppose that A - f is not torsion free, hence

for some b€a, d€D : d (b—~f) =0, thus for allainA : d<f, ab >=0.
But this implies < £, a > = 0 for all a, or, b = £ = 0.

(@ = (@ : M= (A—f) is f.g. and torsion free. Then I = {a€A : a ~M = 0}
is an ideal of A with A/I is f.g. and torsion free (because I is the kernel
of the map T A EndD(M) given by n(a) [m] = a - m. Hence, A/I*> EndD(M)
and thus A /I f.g. and torsion free) .

But for any a€1:<f,a> = <a-=f£,1> =<0,1> =0.

So, I ¢ Ker f, whence f €A°. This proves the equivalence (a) - (d) .

Obviously, (e) = (a) follows by left-right symmetry from (a) = ay.

Proposition 1.6 : If C is a D-coalgebra such that C is a projective

* : ok
D-module. Let C be the dual algebra. The natural map C > C maps

*
CtoC °.




proof.
*  x ) . Kk L.
Iet ¢ €C, c€C and c' the image of ¢ in C . The definitions of - and
*
of the multiplication in C imply :
*
c ~c'= 32 ¢}, <c, c'2 >, 'Thus C = ¢' is f.g. and also torsion
(i)** (1) (2)
free, since C is torsion free.

P . o * o, ; *k o%k . ok
The injection A°«> A induces amap A > A°". Define : m : A~ A

to be the composition map A - A** > A°*.  Note that = i% an algebra map.

Proposition 1.7 : Let A, C be projective D-modules, A a D-algebra and
C a D-coalgebra, then there is a one to one correspondence between

*
Algy (a, C) and CoalgD(C, A°).

proot.
*
Given f EAlgD(A,C ), let ¥ (£) €CoalgD(C,A°) be the composite :

[+
y@E:coce &

A°.
*
If g €CoalgD(C,A°) , let & (g) € AlgD(A,C ) be the composite :
& (g) : ALK @
Tt is easily verified that & (V(f)) = f and & (V¥ (g)) = g, since

V(f) () :tA-D a~ <f(a, c>; and ¢(g) (@ : C~>D c+—<glc), a>.
In the above proposition we showed that (-)° has the required properties
to complete Sweedler's construction, this time for finitely generated

projective D-algebras.

Definition 1.8 : If V is a D-module, a pair (C, n) where C is a

D-coalgebra and 7 : C - V a D-module morphism, is called a cofree coalgebra

on V if for any projective D-coalgebra C' and D-module morphism £ : C' > V

there is a unique coalgebra map F making the following diagram camutative :




If it exists, C is clearly unique up to D-coalgebra isomorphism.
Theorem 1.9 : If V is a f.g. projective D-module, then the cofree

coalgebra on V exists.

proof.
let T(V*) be the tensor algebra on V*, which is a projective D-module since
V* is f.g. and projective. Iet. i : V* “r T(V*) be the natural injection.
Let 7 be the composite

e T(V*)° > T(V*)* l: V**
We claim that (T (V*) °, n) is the cofree coalgebra on V** =V, Let Cbe a
projective D-coalgebra and £ : C ~ V** a D-module morphism.
Denote by £ the composite v ooy ~f>* ¢". Because of the universal
mapping property for T(V*) , there is a unique algebta map g such that the

following diagram is commutative :

T(v*)




Dualizing this diagram we obtain :

*
T(V }°
N go
* A
(W ) cko
*
% g
i
\
b8 4 ok
V € C <« > C

The vertical composite is nothing but n : T(V*) ° > V**, the top diagonal
composite is the unique coalgebra map F : C - T(V*) ° corresponding to

g : T(V*) - C* (see Prop. 1.7).

The bottom horizontal composite is f : C ~ V** since there is a one to

*k * *
one correspondence between HomD (C,v ) and HomD (v ,C) given by

*k * %
¥ og HomD(C,V ) — HomD(V ,C) ¢ &

* aorx B *
f e (V >V - C)

h 4
g Yk

*k
(c~cC V) —g

and the horizontal composite is & (y (f)) = f. Thus, (T(V*) °, m) is the

Kk
cofree coalgebra on V. =V,

Let us recall the definition of "measuring". Iet A, B be D-algebras,
M a D-coalgebra and ¥ : M ® A > B a D-module morphism. M is said to measure

A to B if | satisfies :
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(1) ¥ m®aa') = (1?1) Vomgy®a) @, ®ah
(2) v m® 1) =e(m 1,

For all a, a' €A; meM,

Theorem 1.10 : ILet A, B be finitely generated projective D-algebras.

There is a D ~coalgebra M = MD(A,B) and a D-module morphism 6 : M® A -+ B
measuring A to B and with the following universal property :

If Cis a pr.ojective D~coalgebra and (C,}) measures A to B then there

is a unique coalgebra map F : C - M such that the following diagram is

commutative :
8

MD(A,B) ®A — 7~ LB

F®I
¥

C®A

proof.
As in M.E. Sweedler [9], using the foregoing results.

Remark 1.11 : If A is a f.g. projective D-algebra, then MD(A,A) has a
unique algebra structure such that it is a bialgebra and 6 : MD(A,A) ® A~ A

makes A into an MD(A,A) ~-module.
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2. Bialgebras associated with D-orders.

From now on we will restrict attention to D-orders in the sense of I. Reiner
[7), i.e. D is a Dedekind ring, K its field of fractions, A a K-algebra

and A a subring of A such that A is a f.q. D'—module and K.A = A,

Remark that A is a f.g. projective D-module since it is finitely generated
and torsion free.

First, we want to investigate the connection between MD(A,A) (as defined

in section 1) and MK(A,A) (as defined by Sweedler in [9]).

Proposition 2.1 : (A,A) @ K is a subbialgebra of M, (A,A).
My D

proof.
(MD (A,4), b, &, p, m) is the D-bialgebra constructed in section 1. We

will give (4,A) ® K a K-bialgebra structure in the following way :
My D

5

MD(A,A) ® K - MD(A,A) ® K ®K MD(A,A) ® K EMD(A,A) ® MD(A,A) ® K

mo®k —m®k

P
]

MD(A,A) ® K~ K

me®k—ce(mk

1, mas usual. Tt is easily verified that these maps are well defined
and that (MJ(A,4) ®, K, B, &, u, m) is a K-bialgebra.

Further V¥ : MD(A,A) ® A >~ A is a D-measuring. Now, define

Ve (M (4, 4) @, K) ®KA+AbyV mM®k ®k'\) =kk' (¥ m®N).

¥ is well defined and a K-measuring. Applying the universal mapping
property of MK(A,A) yields a unique K-coalgebra map F such that the

following diagram is comxﬁutative :
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MK(A,A) ® A » A

F®I

<

(MD (A,A) ® K) ® A

It is easy to check that F(M.D (A,A) ®D K) is a subbialgebra of MK(A,A) . o

From now on, we will identify MD(A,A) with its image in MK/(A,A) .

Definition 2.2 : C is a torsion free D-coalgebra, then

B

intersection.
C is simple if it has no non-zero subcoalgebras.
C is pointed if all simple subcoalgebras of C are free D-modules of

rank one.

Lemma 2.3 : If H is a torsion free D-coalgebra and G(H) is the set of its

group-like elements, then :
(1) D G(H) is a free D-module

(2) G(H) corresponds bijectively to the free subcoalgebras of rank one,

proof.
(1) Suppose D G(H) is not free, hence there are Iyre-er9, €G(H) :

Dgy+...+Dg, is not free. By induction on n we may suppose however that
Dg;*...+Dg _; is free. Thus dn 9, = z di 95 with dn # 0, then :
Adn I, = 2 di Ag, =1 di 9; ®g;s On the other hand, Adngn=dngn®gn,

hence 2 dn di 95 ® 9; = z di dj 9; ® gj.
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2 _ _ _ . .
Thus dn éli = di’ hence dn = d.i or di = 0 and di dj =0 of i # j so there
is just one i : di # 0. Thus 9, = 9y done.
(2) ILet H' be a free subcoalgebra of rank one, H' = Dh and Ah = d(h ® h).
Take h' = dh, then Ah' = h' ® h', hence ¢(h') = 1 and this implies that

d is invertible in D. Finally Dh' = Dh = H'.

Recall from [9] that HK(A,A) is the maximal cocommutative pointed subco-

algebra of MK(A,A) .

Definition 2.4 : HD(A,A) = {m EMD(A,A) tmel EHK(A,A)}.

Proposition 2.5 : If L is a cocommutative pointed D-subcoalgebra of

MD(A,A), then L ¢ HD (A,A) .

proof.
Iet I be a simple K-subcoalgebra of L ® K, and let I' = {1 €L : i ® 1 €I},
Then, 0 # I' and I' is a D-subcoalgebra of L, hence, there is a simple
D-subcoalgebra J = Db ¢ I, |

Thus J ® K = Kb ¢ I and since I is simple, Kb= I, therefore every simple
subcoalgebré of L ®D K is 1-dimensional, so L ® K is a pointed cocaommutative

K-subcoalgebra of MK(A,A) , hence L ®D K c HK(A,A) .

Therefore L < HD(A,A) .

Proposition 2.6 : H.D(A,A) is pointed.

proot.
Let L be a simple D-subcoalgebra of HD(A,A) , L ®D Kc HK(A,A) a

K-subcoalgebra. Since HK(A,A) is pointed, there is a
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ge€G (HK(A,A)) : Kg ¢ L®DK.

let I' = {1€L : 1 ® 1€K g}, thén L' is a nonzero D-subcoalgebra, hence L = L'.
If we are able to prove that g¢L ® DP for all P prime ideals of D, then

gen L ® DP = L and thenDg ¢ L is a D-subcoalgebra, so Dg = L, done.

Now, L is a f.g. projective D-module with basis, say Ayreeerlpe

a; =k.g for same k €K, thus, ba;=k g®g = kL a;, ® a;. Since L ® D,

is a Dy-coalgebra Aa; ¢L= (L®D,) ® (L®D,) and L has D,-basis

a; ® ay. Thus, f‘inally, Kt €Dy, SO g€D, @ © L ®Dpe

P

(1) HD (A,A) EndD (A) so HD(A,A) is finitely generated and torsion free,
hence it is a f.g. projective D-module.

(2) For all m in MK(A,A) , there exists an element d in D; dm : A ~> A, ifor,
A =D +...4 Dxn and m(xi) = 3 kij 'xj with kij €K, so for all i we can

1
find cil.l €D such that dim (‘Xi) €A. Finally put d =1 di’ then dm : A —~ A,

Theorem 2.9 : If m 6H11<(A,A) (i.e. the pointed irreducible camponent of

HK(A,A) with group like element 1, cfr. [9]1), then there exist a
d €D, and a D-coalgebra C ¢ HK(A,A) which is a f.g. D-module with d m€¢C

and C measures A to A.

Eroof .

First, let m¢ C; (Hll< (3,4)) (for notation and pronerties the reader is
referred to [91]).

n=13:Then Am =m® 1+ 1®m. Wecan find a d in D with dm : A~ A
Take C = D.1 + D.dm. Then C measures A to 4, dm¢ Cand (C, 4] el

is a finitely generated D-coalgebra.
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_ . , 4]
n>1¢:Ten Am =m® 1+ 1®m+ ?_ n, ®mi with n,, mié%_l (HK(A,A)).
By the induction hypothesis, we can find di’ d:!L €D and Csr Ci' f.g. D-subco-
algebras measuring A to A such that d, n, €C,; d! m, €C!.

_ i1 L L L L
Take C' = 2 c, + 2 Cl!, then C is a f.g. D-subcoalgebra of HK(A,A)
measuring A to A.
Further, there exists an element d' €D such that d'm : A - A. Now, take
d=4"m di v d}_ and C = C' + D d m, then C satisfies the requirements
of the theorem.

1 +,.1 ,
et mECn(HK(A,A), then m - ¢ (m) 1A€Cn(H.K(A,A)), S0 there is a d €D and
C with d(m - ¢(m) 1A) in C. Iet d' ¢(m) €D, 4" = dd', then d" m¢€C.

Finally, Hy(®,) = uc, (B (2,8)) finishes the proof.

Theorem 2.10 : In the situation of (2.9) we have :

HE(8,8) € Hy(4,0) &) K.

proof.

Iet m¢€ H[]'((A,A) , then by the previous theorem there is an element d of D
and a f.g. D-coalgebra C CHK (A,A) measuring A to A and dm €C, By the
universal mapping property of MD(A,A) there is a D~coalgebra map F such

that the diagram below is cammutative :
MD(A A) ® A — A
F®TI
C®A

Hence, we can view dm as an element of MD(A,A) and since dn ® 1 = dm EHK(A,A)

. 1 :
we get that dm GHD(A,A) . Finally dm ® 3 € HD(A,A) ®D K.
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3. Some Galois Theory for Dedekind Rings.

In this section we will amply the foregoing in order to get a satisfactory
Galois theory for Dedekind rings. Throughout we will consider the following
situation. D is a Dedekind ring having K for its field of fractions,

E another Dedekind ring with field of fractions L such that E is a f.q.
D-module (hence E is the integral closure of D in L).

If (H, A, ¢) is a D-coalgebra and ¢ : H ® E - E a D-measuring, then

(H® K, &, &) is a K-coalgebra and ¢ : (H ® K) ® L>La K-measuring, with :

t:H®K->H®H®K h®k+ th®k

=3

: H® K -+ K : h®kr—k eth)

9 : (H®K) ® L~ L h®k ®k'le—kk'.oh @ e)

It is easy to check that all these mappings are well defined.

Definition 3.1 : Define the fixed elements of an algebra A under a

coalgebra C which measures A to A to be the set

AC = {a€A|c.a=09(c®a) =c(c) a;YcEC).

Proposition 3.2 : In the above situation, E]EﬁI is the integral closure of

DinLH®DK.

proof.
' . . H ' H ®DK : .
Iet L' be the field of fractions of E'. Then L' C L , because, if

1' = d/d' €L', then :

V(th® k) d/d'") =k/d' v(h®d) =k/d"' ¢(h) d=¢c¢(h ®k) d/d'.
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Now, suppose that L' ; LH ® K, and let D' be the integral closure of D in
M ® K , Vent ‘
L , we have D ¢ E and for every d' €D', h€H :

e(h) d', thus D' c B, but this

i

yhed)=Yhel ©d') =cheo1l a

contradicts L' ; i ®K and therefore L' = H® K. Conversely, if
xELH ® K and x is integral over D then x €¢E and for every h¢H : Vv (h ® x)

= ¢(h) %X, sO xéEH.

Proposition 3.3 : HD(E,E) is a D-order in HK(L,L) .

In the foregoing section, we established H%(L,L) C HD(E,E) ® K.
Further, by a theorem of Konstant we have :

HK(L,L) =KG# H%(L,L) , where G is the set of group-like elements of
HK(L,L) and .#. denotes the smashed product, cfr. [9 ]. So, it remains
to prove that G C Hy (E,E).

If g €G, then g is a K-automorphism of L. If e EE, then there exist

d dn €D such that :

O,oon,

n _ n _
d e +...4kd) e dq = 0, hence, 4 gle) +...+ dl gle) + do = 0.

0
Since E is integrally closed in L, we have g(e) €¢E. Thus, DG is a co-
commutative pointed measuring bialgebra and by the universal property of

HD(E,E); DG < HD(E,E) . Finally, because DG is pointed, DG ¢ HD(G,G) .

Now, let H C HD(E,E) then by definition : H® K € HK(L,L) and by
Konstants theorem :

N 1
H® K=KG(H® K #HHe K.

Now, we are able, as in the foregoing section, to proof that G(H) = G(H ® K).

put : H = (he¢H : h® 1 ¢ (H®K) }.
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Clearly, g is a D-subcoalgebra of H and . ® K= ut (H ® K).

Definition 3.4 :

Iet E be a ring extension of D such that E is a finitely generated D-module,

E is called a Galois extension with Galois group G if there is a represen-
tation of G by D-automorphisms of E leaving D elementswise fixed.
E is called a purely inseparable extension if for every x €¢E there is a

e
natural number pe with & ¢ D, p the characteristie of D.

Remark : Our definition of a Galois extension is not the same as the one
given in De Meyer-Ingraham [5]. The extension Z [V2] of Z, e.g., is

Galois in the sense of (3.4) but not in the sence of [5].

Theorem 3.5 : (Galois theorem for Dedekind rings)
Iet D be a Dedekind ring of characteristic p, H a cocomutative bia‘lgebra
measuring a Dedekind extension E of D, H ¢ HD(E,E) , G =G(H) and H1

as above, then :

1
(a) EH is Galois over EH

G is purely inseparable over EH

1
(¢) E and B &x g0 G

) E°

have the same field of fractions L.'

proof. 1
gl Hy (H ® K)
(a) By Prop. 3.2, E  1is the integral closure of D in L . Now,

HI]i(H ® K) H®K .
by [ 9, Prop. 10.2.3], L is Galois over L” = =, Hence there are

l(H ® K)
LH ®K —automorphisms o 17° 1%y of L leaving exactly LH ® K
1
fixed. For all i; ®4 (EHl) CEHl. Thus, the elements of EH fixed under

all o, build il
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(b) EDG is the integral closure of D in LKG. By [ 9, 10.2.3] LKG is purely

inseparable over LH ® K. If x EEDG, there exist dn—l reesy A D¢

0

i T d1 X + d, = 0, hence there is natural number

0
e e = e
pe : ¥ P ® X ang further : (X2 ..+ do)p = 0 hence, 0D R dg
e ,
so & is in the integral closure of D in LH ®X_ E:1LI
l .
(c) Because LH H®X) and LKG are lineary independend over LH ® K there

1 1
is an isomorphism EH ® EDG e EH EDG.

1 1
The field of fractions of EH EDGequals LH (H®X) LKG

=L.
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4, Orders in central simple algebra.

First we prove two theorems which are of some independent interest :

Theorem 4.1 : Let H be a pointed irreducible K-coalgebra with unique group
like element 1 and H measures B to B. For all natural numbers n and for
all m¢€ C:; (H), we can find a natural k and an injection ¥ : B+~ Mk(B); with
Mk (B) the k x k matrices with coefficients in B, ¥ is an upper trianqular
matrix for every a € B with constant diagonal element a, V(a) 1,k =m,a

and y(@); = p.a with pECI(H), 1<n, for i > j.

proof. (by induction on n)

n =1 : Recall from Sweedler [9] that CI (H) = P(H), the primitive elements

of H. m€P(H) implies that m is a derivation on B, therefore we have an

algebra morphism :

am,a
\l/m : Be H2(B) a— (0 a)

satisfying the requirements of the theorem.
' h

‘ +
n>1z: Ifm Cn(H),wehave. c—c®l+1®c+i§1pi®qi,
with Pir 95 € C;_ 1 (H) . By the induction hypothesis we can find algebra

moncmorphisms \J/pi, \]/qj satisfying the requirements of the theorem.

vV : B~ (B)
Py Mki

Wq. : B~ Ml.(B)
J J
n
Now, construct a mapping \j/m : B —>MK (B) with k = iél (ki + li) -2h+1

in the following way :
a a-1

let k. =1, =0andv =.,2. k., + .2
0 a i j=

0 iZo 320 lj—2a,+1,

a
W= iéo (k.i + li,) - 2a. Now, define :
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¥ (a) P L=y @), . 1<is<l1l -1
m Va,+‘1‘ ’ Va+j _ qa 1,3 a
<9 <
1 <3 la
= <1i<
\l{m(a) wa+i, wd+j \pra+l (a)i,j lsi a+l
< 9 <
2 J kcc+l

\Pm(a)i,j =a , for all i

v_(a) = (@) <<
m 1, wa+1. pq+l 1,i 2<1is ka+1
W@k, v TV @), 1<i<1_,

\J/m(a)l, k- m-2

and every other entry will be zero. It is easily verified that \L/m is

again an algebra morphism satisfying the requirements of the theorem.

Definition 4.2 : Let 2 be a central simple K-algebra. m¢€ EndK(Z) is
called inner, if there are elements a;s al! € 7 such that

n
m(a) = i-z-=1 aia ai for all a in Z.

Theorem 4.3 : For all m€H,(3,2) : m is inner.

proof.

By a theorem of Konstané, HK(Z,Z) = KG # u' with G the group like elements
‘of HK(Z,Z) and H1 the pointed irreducible component of 1. The group-like
elements are preci.éefly the K-autamorphisms and they are inner by the
Noether-Skolem theorem. Therefore it will be sufficient to prove that
every m in H‘1 is imner. Ifm ECn(Hl) then m' =m - ¢ (m) lZ € C:(Hl),
thus we can find a natural number k and an algebra morphism V¥ : Z‘->Mk (z)

with




a m' (a)

. + 1
with ng, €CJ(H), 1<n

Now, ¥ is an isomorphism between Z (imbedded diagonaly in M. (Z) ) and
V¥ (2), two simple subalgebras of the simple Artinian ring Mk ().
Furthermore, since nij and m' are in C+ (Hl) , ¥ leaves K elementswise
fixed, so by the Noether-Skolem theorem there exists an invertible

*
For all a€Z : ax_, = \_.a, thus » , €K for every i.
ni ni ni

(Xij) €M {Z) with : V(a) Xij = )\ij a for all ‘ac¢z.

Since (xij) is invertible, we can find an idex j : ‘an # 0.
Computing on both sides the product entry (1,3) gives us :

k-1
! =
a)\lj + a§2 n, . (a) )\aj + m'(a) xnj )\lja , Or

R | _ _ k=l .
m' (a) xnj (le a axlj a§2 n, . (a) xaj)

. . + . . .
Now, apply induction : Cl (Hl) consists of derivations, hence they are

inner, so we may assume all n a to be inner and thus m' is inner too.

1

Finally, m = m' + ¢ (m) 12 and therefore m is inner,

Theorem 4.4 : Let D be a Dedekind ring such that N{P :ht(P) = 1} = 0,
K its field of fractions, Z a central simple K-algebra and A a D-order
in K. For all but a finite number P € Spec(D) we have :

Hy (A

. AP) is a D.-order in HK(Z,Z) .

P’ P

22.
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proof.

_ . _ -1
Iet G(HK(Z,Z)) = {cpl,...,an}, each ¢, is of the form "Di.(x) =a, xa
with a; in 2. We can find elements di’ d__!L in D, xi in A such that :

— L]
Now, put d = ier—-ll d, d! # 0, hence all but a finite number of prime
ideals P of D exclude d. Thus, for all but a finite nurber P ¢ Spec(D)
we have : 05 (AP) C AP for all i, hence G ¢ H.DP(AP,AP) . By theorem
1 \ .

2.10, HK(Z,Z) c H.DP(AP,AP) ®_. K and the foregoing yields KG CHDP(AP,AP)(X:D K.

Pp P

Konstant's theorem now finishes the proof.
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